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Abstract. Designing effective control policies requires effi-
cient quantification of the nonlinear response of air pollu-
tion to emissions. However, neither the current observable
indicators nor the current indicators based on response sur-
face modeling (RSM) can fulfill this requirement. Therefore,
this study developed new observable RSM-based indicators
and applied them to ambient fine-particle (PM2.5) and ozone
(O3) pollution control in China. The performance of these
observable indicators in predicting O3 and PM2.5 chemistry
was compared with that of the current RSM-based indicators.
H2O2×HCHO/NO2 and total ammonia ratio, which exhib-
ited the best performance among indicators, were proposed
as new observable O3 and PM2.5 chemistry indicators, re-
spectively. Strong correlations between RSM-based and tra-
ditional observable indicators suggested that a combination
of ambient concentrations of certain chemical species can
serve as an indicator to approximately quantify the response
of O3 and PM2.5 to changes in precursor emissions. The ob-
servable RSM-based indicator for O3 (observable peak ra-
tio) effectively captured the strong NOx-saturated regime in
January and the NOx-limited regime in July, as well as the
strong NOx-saturated regime in northern and eastern China
and their key regions, including the Yangtze River Delta and
Pearl River Delta. The observable RSM-based indicator for
PM2.5 (observable flex ratio) also captured strong NH3-poor

conditions in January and NH3-rich conditions in April and
July, as well as NH3-rich conditions in northern and eastern
China and the Sichuan Basin. Moreover, analysis of these
newly developed observable response indicators suggested
that the simultaneous control of NH3 and NOx emissions
produces greater benefits in provinces with higher PM2.5 ex-
posure by up to 1.2 µg m−3 PM2.5 per 10 % NH3 reduction
compared with NOx control only. Control of volatile organic
compound (VOC) emissions by as much as 40 % of NOx
controls is necessary to obtain the co-benefits of reducing
both O3 and PM2.5 exposure at the national level when con-
trolling NOx emissions. However, the VOC-to-NOx ratio re-
quired to maintain benefits varies significantly from 0 to 1.2
in different provinces, suggesting that a more localized con-
trol strategy should be designed for each province.

1 Introduction

Air pollution has attracted great attention because of its
harmful effects on human health (Cohen et al., 2017), climate
(Myhre et al., 2013), agriculture and ecosystems (Fuhrer et
al., 2016), and visibility (Friedlander, 1977). In particular,
ambient fine particles (PM2.5) and ozone (O3) are among
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the top risk factors for global mortality (Forouzanfar et al.,
2015; Cohen et al., 2017) and have increased the need to ef-
fectively control anthropogenic sources in order to reduce the
ambient concentrations of PM2.5 and O3 (Wang et al., 2017).
The challenge is that the dominant contributions to ambi-
ent PM2.5 and O3 arise from a series of chemical reactions
among precursors, including sulfur dioxide (SO2), nitrogen
oxides (NOx), ammonia (NH3) and volatile organic com-
pounds (VOCs) (Seinfeld and Pandis, 2012). The complex-
ity of the chemical reactions and pathways associated with
variations in meteorological conditions and precursor levels
results in strong nonlinear responses of PM2.5 and O3 to their
precursor emission changes (West et al., 1999; Hakami et
al., 2004; Cohan et al., 2005; Pun et al., 2007; Megaritis et
al., 2013). Such nonlinearity issues are a major challenge for
policy-makers to design an effective control strategy.

Chemical species in the atmosphere are often highly corre-
lated with one another, since their concentrations are affected
by common atmospheric physical processes (e.g., mixing and
transport) and chemical reactions. Concentrations of pollu-
tants such as O3 and PM2.5 are typically determined based
on the ambient levels of their gaseous precursors, implying
that O3 and PM2.5 chemistry can be identified through a com-
bination of concentrations of some of their related chemical
species (i.e., indicators). The empirical kinetic modeling ap-
proach (EKMA) developed by the U.S. EPA quantifies the
relationships of O3 with its precursor concentrations based
on O3 chemistry (Freas et al., 1978; Gipson et al., 1981).
The EKMA plot can aid inference of control strategy effec-
tiveness (e.g., NOx or VOC control) according to VOC-to-
NOx ratios. Several studies have developed “observable” in-
dicators by relating O3 to reactive nitrogen concentrations
and species related to atmospheric oxidation. Such indicators
include NOy , H2O2/HNO3, HCHO/NO2 and H2O2/(O3+

NO2) (Milford et al., 1994; Sillman, 1995; Tonnesen and
Dennis, 2000; Sillman and He, 2002), which can be used
to identify NOx-saturated or NOx-limited regimes. The O3
indicators can be derived from surface-monitoring observa-
tions (Peng et al., 2006), modeling simulations (Wang et al.,
2010), or even satellite retrievals (Jin et al., 2017; Sun et
al., 2018) and then examined using three-dimensional chemi-
cal transport models (CTMs) (Jiménez and Baldasano, 2004;
Zhang et al., 2009; Liu et al., 2010; Ye et al., 2016). Regard-
ing PM2.5 chemistry (more specifically for inorganic PM2.5
sensitivities to NH3 and NOx), indicators such as the degree
of sulfate neutralization (DSN), gas ratio (GR), and adjusted
gas ratio (AdjGR) have been developed (defined in the Sup-
plement Sect. S1) to identify NH3-poor or NH3-rich condi-
tions (Ansari and Pandis, 1998; Takahama et al., 2004; Pin-
der et al., 2008; Dennis et al., 2008). The indicator-based
method can be efficient in determining the chemical regime
in the current scenarios and in qualitatively estimating O3
and PM2.5 sensitivities to small perturbations in precursor
emissions or ambient concentrations without involving com-
plex CTMs. However, traditional indicator methods are un-

able to quantify the extent of the chemistry regime (Pinder
et al., 2008); hence, the traditional observable indicators pro-
vide policy-makers limited information for reducing O3 and
PM2.5 pollution.

The sensitivity of O3 and PM2.5 to precursor emissions can
be explored by running multiple brute-force CTM simula-
tions. For instance, the response surface model (RSM) devel-
oped from brute-force simulations can generate a wide range
of O3 and PM2.5 responses to precursor emissions ranging
from fully controlled to doubled emissions (i.e., −100 % to
100 % change relative to the baseline emission) (Xing et al.,
2011; Wang et al., 2011). Based on the RSM, the chemical re-
sponse indicators of peak ratio (PR) and flex ratio (FR) have
been designed to identify regimes of O3 and PM2.5 chem-
istry, respectively (see Xing et al., 2018, for a detailed de-
scription of PR and FR). In contrast to the observable in-
dicators, the PR and FR are meaningful values that repre-
sent the exact transition point at which a chemistry regime
converts to another regime. With the recent development
of the polynomial-function-based RSM (pf-RSM), the PR
and FR can be easily calculated (Xing et al., 2018). How-
ever, this method is built on at least 20 CTM simulations;
in other words, estimating the PR and FR requires consider-
able computing resources. As a result, RSM use remains lim-
ited despite recent improvements in RSM efficiency (Xing et
al., 2017).

Over the preceding decade, China’s air quality has under-
gone substantial changes. In particular, the enactment of the
Air Pollution Prevention and Control Action Plan from 2013
to 2017 greatly reduced PM2.5 exposure (Zhao et al., 2018;
Ding et al., 2019a). However, during this period, significant
increases in O3 concentrations were observed in most Chi-
nese cities (Li et al., 2019). The rate of increase in O3 con-
centration (based on the 90th percentile of a daily maximum
of 8 h running average) was approximately 27 %, 19 %, and
8 % in the North China Plain (NCP), Yangtze River Delta
(YRD), and Pearl River Delta (PRD), respectively (Ding et
al., 2019b). Greater control over anthropogenic sources must
be enforced to reduce PM2.5 and O3 concentrations (Lu et
al., 2018). Notably, accurate quantification of the nonlinear
responses of O3 and PM2.5 to their precursor emissions is
critical and a prerequisite for effective mitigation of air pol-
lution in China.

The design of an effective O3 and PM2.5 control strategy
requires efficient quantification of air pollutant sensitivity
to precursor emissions. Indicator studies have demonstrated
that the nonlinear response of O3 and PM2.5 to precursors
can be estimated by using ambient concentrations of related
chemical species. It is expected that the response indicators
originally derived from RSM predictions (i.e., PR and FR)
can also be calculated using a combination of ambient con-
centrations of certain chemical species, enabling these in-
dicators to become observable indicators rather than being
dependent on numerous CTM simulations. To support the
needs of policy design for O3 and PM2.5 control, this study
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Figure 1. Flow of observable response indicator development and
application.

developed effective indicators that not only represent O3 and
PM2.5 chemistry but also aid in determining the most feasible
emission reduction path, similar to the benefits provided by
RSM-based indicators. The flow of this study is presented in
Fig. 1. The new observable response indicators were devel-
oped by investigating the link between observable and RSM-
based indicators in China.

The remainder of this paper is structured as follows:
Sect. 2 presents the detailed methods for CTM model-
ing, RSM configuration and response indicator development.
Section 3 presents the evaluation of the performance of ob-
servable indicators in predicting the chemistry regime and
the development of the observable response indicators and
discusses their policy implications. Section 4 summarizes the
main conclusions of this study.

2 Method

2.1 Configuration of the CTM and RSM

In this study, the Community Multi-scale Air Quality
(CMAQ) model (version 5.2) was used to simulate the base-
line concentrations of O3 and PM2.5 and their responses in
numerous emission control scenarios with different emis-
sion change ratios. The simulation was conducted on a do-
main covering China with 27 km× 27 km horizontal reso-
lution (Fig. 2). In 2017, January, April, July, and October
were simulated to represent winter, spring, summer, and fall,
respectively. An annual level was estimated as the average
of the levels in these four months. The concentration data
were analyzed based on the monthly average for afternoon
O3 (12:00–18:00 China standard time when O3 was the
highest across a day) and monthly average for 24 h PM2.5.
To approximate exposure concentrations, we also estimated
population-weighted O3 and PM2.5 at the regional or national
level by averaging the gridded concentrations weighted by
the population in each grid cell. The gridded population data
were obtained from the 1 km× 1 km LandScan population
dataset in 2016 (Oak Ridge National Laboratory, 2013).

Figure 2. Simulation domain over mainland China (27 km× 27 km
resolution, 182×232 grid cells). The 31 provinces are BJ – Beijing;
TJ – Tianjin; HEB – Hebei; SX – Shanxi; IM – Inner Mongolia;
LN – Liaoning; JL – Jilin; HLJ – Helongjiang; SH – Shanghai; JS –
Jiangsu; ZJ – Zhejiang; AH – Anhui; FJ – Fujian; JX – Jiangxi; SD
– Shandong; HEN – Henan; HUB – Hubei; HUN – Hunan; GD –
Guangdong; GX – Guangxi; HN – Hainan; CQ – Chongqing; SC –
Sichuan; GZ – Guizhou; YN – Yunnan; TB – Tibet; SHX – Shaanxi;
GS – Gansu; QH – Qinghai; NX – Ningxia; and XJ – Xinjiang).

The anthropogenic emission data were developed by Ts-
inghua University using a bottom-up method (Ding et al.,
2019a) with updated activity data from the 2017 China statis-
tical yearbook as well as the latest application rates of end-of-
pipe control technologies based on the governmental bulletin
and reports. The anthropogenic emissions were gridded into
27 km× 27 km horizontal resolution to match the CMAQ
model (Fig. S1). The 2017 biogenic emissions over China
were generated using the Model for Emissions of Gases and
Aerosols from Nature (MEGAN version 2.04). The meteo-
rology field, driven by the Weather Research and Forecast-
ing Model (WRF version 3.7), followed the same configura-
tion as that in our previous study (Ding et al., 2019a, b) and
thus included the Morrison double-moment microphysics
scheme, the RRTMG radiation scheme, Kain–Fritsch cu-
mulus cloud parameterization, the Pleim-Xiu land-surface
physics scheme and the ACM2 planetary boundary layer
(PBL) physics scheme. We used NCEP FNL (Final) Opera-
tional Global Analysis data for the initial and boundary con-
ditions in the WRF. The comparison with observation data
from the National Climatic Data Center suggested agreeable
performance of the WRF model for simulating wind speed,
humidity and temperature (Table S1). The CMAQ model per-
formance in reproducing O3 and PM2.5 concentrations was
evaluated by comparison with the ground-based observations
(Fig. S2), which suggested acceptable CMAQ model perfor-
mance that met the recommended benchmark (Ding et al.,
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2019a, b). The normalized mean biases of CMAQ in pre-
dicting PM2.5 and O3 are −16.4 % and −12.5 % compared
with monitoring data obtained from the China National En-
vironmental Monitoring Centre. The mean fractional biases
for PM2.5 and O3 prediction are −14.2 % and −11.1 %, re-
spectively (within the benchmark of±60 %). The mean frac-
tional errors for PM2.5 and O3 prediction are 21.6 % and
17.0 %, respectively (within the benchmark of 75 %). The
RSM was developed based on multiple CTM simulations for
various emission-control scenarios according to the brute-
force method. Identical to our previous RSM studies (Xing
et al., 2017, 2018), the responses of O3 and PM2.5 to precur-
sor emissions were analyzed using the baseline case and 40
control scenarios using the Latin hypercube sample method
for four control variables, namely the emission ratios of NOx ,
SO2, NH3 and VOCs. Though the responses of O3 and PM2.5
to local or regional emissions vary significantly as suggested
in our previous study (Xing et al., 2011), we applied the
same change ratio of each pollutant emission to all regions
across China in this study. This approach is consistent with
the implementation of a multiregional joint control strategy,
which is reasonable for China. The same level of local and re-
gional emission reduction has been recommended to achieve
China’s aggressive air quality goals (Xing et al., 2019).

The control matrix is provided in Table S2. The range of
emission changes is set as 0 to 2 to be consistent with our
previous studies in which the pf-RSM performance has been
well examined (Xing et al., 2011, 2018; Wang et al., 2011;
Ding et al., 2019b). The pf-RSM performance in predicting
PM2.5 and O3 responses has been evaluated in detail using
leave-one-out cross validation as well as the out-of-sample
validation method, with normalized errors all within 5 % for
both PM2.5 and O3 across the domain. Relatively large biases
occurred for marginal cases, where emissions are controlled
by nearly 100 % and predicted concentrations are very small.
These cases have limited influence on the shape of the non-
linear curve of the response function. However, the RSM is
developed from a suite of CMAQ simulations, and so un-
certainties in the chemical mechanism used in CMAQ might
influence the O3 and PM2.5 predictions.

2.2 RSM-based indicators of O3 and PM2.5 chemistry

Based on the developed pf-RSM, the nonlinear responses of
O3 and PM2.5 concentrations to precursor emissions can be
represented as follows:

1Conc=
n∑
i=1

Xi ·
(
1ENOx

)ai
·
(
1ESO2

)bi
·
(
1ENH3

)ci
· (1EVOCs)

di , (1)

where 1Conc is the change in O3 or PM2.5 concentration
from the baseline concentration calculated from a polyno-
mial function of four variables (1ENOx , 1ESO2 , 1ENH3 ,
1EVOCs); 1ENOx , 1ESO2 , 1ENH3 , and 1EVOCs are the

Table 1. Terms in the pf-RSM design for O3 and PM2.5.

Term O3 PM2.5

1 NO5
x VOC

2 NO4
x NH3

3 NO3
x NH2

3
4 NO2

x NH3
3

5 NOx SO2
6 VOC VOC2

7 VOC2 NOxVOC
8 VOC3 NO2

xVOC
9 NOxVOC NO4

xVOC
10 NOxVOC3 NOxNH3
11 NO5

xVOC NOx
12 NO2

xVOC NO2
x

13 SO2 NO3
x

14 NH3 NO4
x

change ratios of NOx , SO2, NH3, and VOC emissions
(i.e., 1Emissions/Baseline_Emissions), respectively, relative
to the baseline emissions (baseline= 0); and ai , bi , ci , and
di are the nonnegative integer powers of 1ENOx , 1ESO2 ,
1ENH3 , and 1EVOCs, respectively. Xi is the coefficient of
term i for the 14 (n) terms listed in Table 1.

The terms used to represent PM2.5 and O3 responses were
determined in designing the pf-RSM (Table 1). The high-
degree terms of NOx , VOCs and NH3 represent their strong
nonlinear contributions to O3 or PM2.5. The interaction terms
of NOx and VOC for PM2.5 and O3 represent the nonlin-
earity in atmospheric oxidations, whereas those of NOx and
NH3 for PM2.5 represent aerosol thermodynamics (Xing et
al., 2018).
Xi was fitted by 40 CTM control scenarios for each spa-

tial grid cell. The Xi values in the pf-RSM for annual-
averaged population-weighted O3 and PM2.5 concentrations
in 31 provinces in China are provided in Tables S3 and S4,
respectively. The terms with the first degree for NOx , SO2,
NH3, and VOCs represent the first derivative of PM2.5 and
O3 response to each precursor emission. O3 was more sensi-
tive to NOx (termX5) and VOCs (termX6) than to SO2 (term
X13) or NH3 (term X14), and O3 sensitivity was negative to
NOx but positive to VOCs in most provinces. PM2.5 sensi-
tivities to the four precursors (terms X1, X2, X5, and X11 for
VOCs, NH3, SO2, and NOx , respectively) were comparable,
whereas PM2.5 sensitivity to NOx could be negative or posi-
tive.

The nonlinearities of O3 and PM2.5 to precursors were
mainly determined by high-order and interaction terms. To
illustrate such nonlinearities further, we used a series of iso-
pleths, as shown in Fig. 3, as an example to present the
national-averaged PM2.5 response to SO2 and NH3 and NOx
and NH3 as well as PM2.5 and O3 responses to NOx and
VOCs in different months. Strong nonlinearity was noted in
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Figure 3. Isopleth of population-weighted PM2.5 and daytime O3 to precursor emission change in different months. (The x and y axes
represent precursor emission rates with a baseline of 1, applied to all grid cells in China; background colors represent the population-
weighted PM2.5 and daytime O3 concentrations in China, with units of micrograms per cubic meter for PM2.5 and parts per billion for
O3.)

PM2.5 sensitivity to NH3 and in O3 and PM2.5 sensitivities
to NOx . PM2.5 sensitivity to NH3 increased alongside the
transition of PM2.5 chemistry from the NH3-rich condition
(typically at high NH3 emission ratios) to the NH3-poor con-
dition (typically at low NH3 emission ratios). O3 and PM2.5
sensitivities to NOx were negative under the NOx-saturated
regime (typically at high NOx emission ratios) but became
positive under the NOx-limited regime (typically at low NOx
emission ratios). In addition, the transition points (corre-
sponding to the NOx or NH3 ratios at which the chemical
regime for O3 or PM2.5 chemistry changed) varied by time
(Fig. 3) and space (see the isopleths at different provinces in
Figs. S3–S6). In general, the NH3-poor condition appears in
winter because of low NH3 evaporation and little agriculture

activity, which is a dominant NH3 source. The strong NOx-
saturated condition appears in winter when photolysis is less
active than in other seasons and concentrates in industrial re-
gions with abundant NOx emissions.
1C_NH3 (the unit is micrograms per cubic meter of

PM2.5 per 10 % NH3 reduction) can be calculated as follows:

1CNH3 =X2× 0.1. (2)

To further quantify the aforementioned nonlinearity, two
RSM-based response indicators (i.e., the PR for O3 and FR
for PM2.5) were calculated as described in our previous stud-
ies (Xing et al., 2011, 2018; Wang et al., 2011).

www.atmos-chem-phys.net/19/13627/2019/ Atmos. Chem. Phys., 19, 13627–13646, 2019
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Figure 4. Performance of observable indicators in predicting O3 chemistry. The x axis represents the PR values where the transition value is
1, and the y axis represents the observable indicators. The blue dots represent the grids where O3 chemistry is successfully predicted by the
observable indicator; the red dots represent the grids where the observable indicator fails to predict O3 chemistry. The numbers in the four
corners represent the grid number in each section; the number in July is much lower than those in the other months because most grids are
located at the NOx -limited regime with PR> 2 in July.
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Table 2. Summary of observable indicators and their performances in predicting O3 chemistry.

Indicator Success rate at TV (%) Success rate at TV’ (%)

TV∗ Jan Apr Jul Oct ANN TV’ Jan Apr Jul Oct ANN

H2O2/HNO3 0.2 68.8 74.9 89.0 60.8 73.4 0.3 77.9 83.0 90.4 70.6 80.5
H2O2/(O3+NO2) 0.02 81.1 41.9 85.4 57.4 66.4 0.005 69.2 73.3 88.8 53.3 71.1
NOy 5 38.9 47.8 87.8 40.9 53.8 – – – – – –
O3/NOx 15 56.5 75.8 58.8 71.7 65.7 – – – – – –
O3/NOy 7 60.7 65.8 23.3 68.2 54.5 – – – – – –
O3/NOz 7 43.5 75.0 76.4 67.0 65.5 – – – – – –
HCHO/NOy 0.28 83.9 32.5 19.4 50.9 46.7 0.1 66.7 77.7 86.3 75.6 76.6
HCHO/NO2 1 87.3 49.7 27.4 73.8 59.6 0.5 75.7 77.2 69.1 82.2 76.1
H2O2×HCHO/NO2 – – – – – – 0.3 92.3 81.6 89.5 86.0 87.3

∗ TV – transition value as summarized in Zhang et al. (2009); TV’ – transition value proposed in this study.

Table 3. Summary of observable indicators and their performances in predicting PM2.5 chemistry.

Indicator Success rate (%)

TV Jan Apr Jul Oct ANN

Gas ratio (GR) 1∗ 51.7 59.3 69.6 41.7 55.6
Adjusted gas ratio (AdjGR) 1∗ 81.8 73.3 74.0 67.5 74.1
Total ammonia ratio (TAR) 10∗∗ 86.2 77.5 80.6 74.0 79.6

∗ TV – transition value as proposed in Zhang et al. (2009); ∗∗ TV – transition value as proposed in
this study.

For O3, the PR can be directly calculated as follows:

PR= 1+1ENOx | ∂1ConcO3
∂1ENOx

=0
ENOx ε [a,b] , (3)

where
∂1ConcO3
∂1ENOx

is the first derivative of the 1ConcO3 to
1ENOx , which can be derived as follows:

5 ·X1 ·1E
4
NOx + 4 ·X2 ·1E

3
NOx + 3 ·X3 ·1E

2
NOx

+ 2 ·X4 ·1ENOx +X5 = 0 . (4)

The PR is the NOx emissions (represented as 1+1ENOx )
that produce maximum O3 concentration under the baseline
VOC emissions. For PR< 1, the baseline condition is NOx
saturated, and the level of simultaneous control of VOCs to
prevent an increase in O3 levels from the NOx controls must
be understood. This level is defined by the ratio of VOCs to
NOx (i.e., VNr) corresponding to the PR and is calculated as
follows:

VNr

= r| ∂1ConcO3
∂1ENOx

=0
when PR< 1, r =1EVOC/1ENOx , (5)

where
∂1ConcO3
∂1ENOx

is the first derivative of the 1ConcO3

to 1ENOx . When 1EVOC = r ×1ENOx , and 1ESO2 and

1ENH3 are 0,
∂1ConcO3
∂1ENOx

can be written as follows:

5 ·X1 ·1E
4
NOx + 4 ·X2 ·1E

3
NOx + 3 ·X3 ·1E

2
NOx + 2·

X4 ·1ENOx +X5 + X6 · r + 2 ·X7 · r
2
·1ENOx + 3 ·X8

· r3
·1E2

NOx + 2 ·X9 · r ·1E
2
NOx + 4 ·X10 · r

3
·1E3

NOx

+ 6 ·X11 · r ·1E
5
NOx + 3 ·X12 · r ·1E

2
NOx = 0 .

(6)

Since the 1ENOx is close to 0 when the controls are taken
from the baseline, we ignore the terms of 1ENOx in the first
derivative function above, and then it can be written as fol-
lows,

X5 + X6 · r = 0. (7)

The VNr therefore can be calculated using the following
equation:

VNr=−
X5

X6
. (8)

For PM2.5, the FR can be directly calculated from the poly-
nomial function of PM2.5 by estimating the second derivative
of the PM2.5 response to NH3 emissions without considering
interaction with other pollutants (Xing et al., 2018). In this
study, we selected a simplified method to calculate the FR,
estimated as the corresponding NH3 emission ratio when the

www.atmos-chem-phys.net/19/13627/2019/ Atmos. Chem. Phys., 19, 13627–13646, 2019



13634 J. Xing et al.: Observable response indicators for O3 and PM2.5

Figure 5. Performance of observable indicators in predicting PM2.5 chemistry. The x axis represents the FR values where the transition value
is 1, and the y axis represents the observable indicators. The blue dots represent the grids where PM2.5 chemistry is successfully predicted
by the observable indicator; the red dots represent the grids where the observable indicator fails to predict PM2.5 chemistry. The numbers in
the four corners represent the grid number in each section; the number in January is much lower than those in the other months because most
grids are located in the NH3-poor conditions with FR> 2 in January.

Figure 6. Development of observable responsive indicators for O3 chemistry based on log-linear regressions between observable indicators
and the PR.

Atmos. Chem. Phys., 19, 13627–13646, 2019 www.atmos-chem-phys.net/19/13627/2019/
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Figure 7. Comparison of the PR derived from the RSM with that calculated from concentrations for O3 chemistry. The oPR was estimated
based on H2O2×HCHO/NO2.

PM2.5 sensitivity to NH3 and NOx emissions is equal under
the baseline conditions (similar to the definition in Wang et
al., 2011, but here we calculated the sensitivity of PM2.5 in-
stead of nitrate in this study):

FR= 1+1ENH3 | ∂1ConcPM
∂1ENH3

=
∂1ConcPM
∂1ENOx

1ENH3ε [a,b] ,

1ENOx = 0, (9)

where ∂1ConcPM
∂1ENH3

and ∂1ConcPM
∂1ENOx

are the first derivatives of the
1ConcPM to 1ENH3 and 1ENOx , respectively, and 1ENH3

can be obtained as follows:

3∗X4∗1ENH3
2
+ (2∗X3−X10)∗1ENH3 +X2−X11 = 0.

(10)

The FR is the NH3 emissions (represented as 1+1ENH3)

that correspond to the inflection point between NH3-rich and
NH3-poor conditions under baseline NOx emissions. A FR
greater than 1 indicates that the baseline condition is NH3
poor, and a FR less than 1 indicates that the baseline condi-
tion is NH3 rich. The extra benefit in PM2.5 reduction (de-
noted as 1C_NH3) from simultaneous NH3 controls in the
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same percentage as the required NOx controls can be quanti-
fied as follows:

1C_NH3 =

(
∂1ConcPM2.5

∂1ENOx
|1ENH3=1ENOx

)
−(

∂1ConcPM2.5

∂1ENOx
|1ENH3=0

)
, (11)

where
∂1ConcPM2.5
∂1ENOx

|1ENH3=1ENOx
is the first derivative of the

1ConcPM2.5 response to 1ENOx when 1ENH3 =1ENOx ,
and

∂1ConcPM2.5
∂ENOx

|ENH3=0 is the first derivative of the
1ConcPM2.5 response to 1ENOx when 1ENH3 = 0.

2.3 Observable indicators of O3 and PM2.5 chemistry

Zhang et al. (2009) summarized the various observable
indicators with their corresponding transition values to
identify O3 and PM2.5 chemistry: O3 indicators were
H2O2/HNO3, H2O2/(O3+NO2), NOy , O3/NOx , O3/NOy ,
O3/NOz, HCHO/NOy , and HCHO/NO2, and the PM2.5 indi-
cators were the DSN, GR, and AdjGR (defined in Text S1);
these indicators have been used extensively in previous re-
search (Liu et al., 2010; Wang et al., 2011; Ye et al., 2016).
In the current study, we evaluated all the aforementioned in-
dicators except DSN (DSN is included in the definition of
the AdjGR; thus it was not considered as a separate indicator
in this study). The original transition values, summarized by
Zhang et al. (2009), are listed in Table 2. In the present study,
we examined these transition values and compared their per-
formance in predicting O3 and PM2.5 chemistry. Because
the RSM-based indicators, PR and FR, are calculated using
the multiple CTM simulations that use state-of-the-science
representations of O3 and PM2.5 chemistry, these indicators
were assumed to represent the true condition for compari-
son with the condition predicted using observable indicators.
The performance of each observable indicator is described
by its success rate, which is the ratio of the number of cor-
rect predictions to the total number of predictions. A correct
prediction is indicated by the observable indicator providing
consistent results for O3 or PM2.5 chemistry as suggested by
PR or FR. The comparison is only conducted for spatial grid
cells with valid PR or FR values within the range of 0 (fully
controlled emissions) to 2 (double emissions).

As RSM-based indicators, the PR and FR have meaningful
values that can be used to illustrate the extent of the chem-
istry regime. The linkage of observable indicators with the
PR and FR was investigated by performing a linear-log re-
gression of the value of the original observable indicator and
the values of the PR or FR as follows:

log(Y )= A ·X+B, (12)

where Y is an observable indicator for O3 or PM2.5, X is the
RSM-based indicator (i.e., PR for O3 or FR for PM2.5), and

Figure 8. Development of observable responsive indicators for
PM2.5 chemistry based on log-linear regressions between observ-
able indicators and the FR.

the coefficients A and B are estimated based on statistical re-
gression. Therefore, the observable response indicators (X′)
can be calculated as follows:

X′ =
log(Y )−B

A
. (13)

The observable response indicators have the same policy im-
plication as that of PR or FR, but they can be directly cal-
culated from the baseline concentrations of certain chemical
species rather than being derived from multiple CTM sim-
ulations. Therefore, these indicators are considerably more
efficient than traditional RSM-based indicators.
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Figure 9. Comparison of the FR derived from the RSM with that calculated from concentrations for PM2.5 chemistry. The oPR was estimated
based on TAR.

3 Results

3.1 Evaluating observable indicator performance in
predicting chemistry regimes

3.1.1 O3

Observable indicators and the PR are compared in Fig. 4,
and the performance of observable indicators in predicting
O3 chemistry is summarized in Table 2. In general, strong
correlation was noted between the observable indicators and
PR. The indicator with the highest annual success rate was

H2O2/HNO3 at approximately 73.4 %, with a value of 0.2
for the transition from NOx-saturated to NOx-limited con-
ditions. However, the original transition value of 0.2 for
H2O2/HNO3 tended to be too low, particularly in April, July
and October (see Fig. 4a). This study found that the annual
success rate of H2O2/HNO3 could be increased to 80.5 % if
0.3 was used as the transition value. This finding was consis-
tent with corresponding findings in previous studies, which
have suggested the transition values of H2O2/HNO3 to be
within the range of 0.2–3.6 at different locations and in dif-
ferent seasons (Sillman, 1995; Sillman et al., 1997; Lu and
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Figure 10. Comparison of VNr with oVNr.

Chang, 1998; Tonnesen and Dennis, 2000; Hammer et al.,
2002; Liang et al., 2006; Zhang et al., 2009). H2O2/(O3+

NO2), with a transition value of 0.02, also exhibited a high
annual success rate of 66.4 %; this rate could be increased
to 71.1 % by applying a transition value of 0.005 because
the original transition value was too high, particularly in
January, April and October (see Fig. 4b). HCHO/NOy and
HCHO/NO2 exhibited relatively low performance, particu-
larly in April and July, because the original transition values
appeared to be too high (Fig. 4g and h). However, the per-
formance of HCHO/NOy and HCHO/NO2 could be greatly
improved by using lower transition values, with increased an-

nual success rates as high as 76 %. The change of the transi-
tion values implies that such indicators cannot fully consider
all factors that determine the O3 chemistry by using con-
centrations of just two species. The transition values of the
indicators NOy , O3/NOx , O3/NOy and O3/NOz were suit-
able for estimating annual levels if only one unique transition
value was applied for all months (apparently, these transition
values for O3/NOx , O3/NOy and O3/NOz in January and
NOx in April and July may have been too low). However,
their success rates (all < 70 %) were not as high as those of
other indicators. The inferior performance of the three O3-
involved indicators (O3/NOx , O3/NOy and O3/NOz) may
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Figure 11. Comparison of the annually averaged PR with VNr in
each province in China.

have been associated with the considerable effects of back-
ground O3, which cannot be removed easily.

Because H2O2/(O3+NO2) and HCHO/NO2 exhibited
good performance in predicting O3 chemistry, this study
proposed a new indicator combining these two indicators,
namely H2O2×HCHO/NO2, with a transition value of 0.3.
The results suggested that this new indicator has the high-
est annual success rate, namely 87.3 %, among all the indi-
cators. Studies (Sillman, 1995; Tonnesen and Dennis, 2000)
have suggested that HCHO is approximately proportional to
the VOC reactivity (i.e., the weighted sum of the reactions
of VOCs with OH) and that HCHO/NO2 closely approxi-
mates the competition between OH reactions with VOC and
NO2 that is central to O3 chemistry. H2O2 derives from a
key radical termination pathway under low-NOx conditions
(HO2+HO2→H2O2+O2). Comparison of H2O2 with NOy
or HNO3, which derives from a key radical termination path-
way under high-NOx conditions (OH+NO2→HNO3), rep-
resents the relative abundance of VOCs to NOx . The new
hybrid indicator incorporates information from the two indi-
vidual indicators and could potentially be more robust.

3.1.2 PM2.5

We selected the GR and AdjGR as observable indicators for
PM2.5 chemistry to identify NH3-poor or NH3-rich condi-
tions. Comparison of GR and AdjGR with the FR is detailed
in Fig. 5. AdjGR performance was much higher than that of
the GR, with a larger annual success rate of 74.1 % compared
with the GR’s 55.6 % (see Table 3). The transition value of
the GR appeared to be too low in all months (Fig. 5a). This
result was consistent with those of previous studies; the Ad-
jGR tends to be a more robust indicator because in contrast to
the GR, it does not require an assumption of full sulfate neu-
tralization (Zhang et al., 2009). The improvement of AdjGR

compared to GR is the greatest in January and the smallest
in July (Table 3). This is consistent with Pinder et al. (2008),
who showed that accounting for DSN is important under cold
temperatures, but GR and AdjGR converge for higher tem-
peratures.

This study designed a new indicator, total ammonia ratio
(TAR), where the sulfate concentration is involved in the cal-
culation, as follows:

TAR=

[TA]2

[TN]× [TS]
=

[NH3]× [NH+4 ](
[HNO3]+ [NO−3 ]

)
×[SO2

4−]
, (14)

where [TN] and [TS] are the total molar concentrations of ni-
trate

(
[HNO3]+ [NO−3 ]

)
and sulfate

(
[SO2

4−]
)
, respectively,

and TAR is the relative abundance of total ammonia to ni-
trate and sulfate, regarded as the product of [TA]/[TN] and
[TA]/[TS]. To simplify the calculation, [TA]2 is assumed to
be the product of the molar concentration of ammonia gas
[NH3] and ammonium [NH+4 ].

The performance of TAR in predicting PM2.5 chemistry
was slightly higher than that of AdjGR, as demonstrated by
the higher success rate of TAR than that of AdjGR in all
months. The annual success rate of TAR was 79.6 %, with
a transition value of 10 (Table 3).

3.2 Developing the observable responsive indicators

3.2.1 O3

Figure 6 presents the log-linear regressions of the O3 observ-
able indicators on the PR indicator derived from the RSM.
In general, all observable indicators exhibited strong cor-
relations with the PR (all except NOy presented positive
correlations with the PR), with varying R2 values (0.08–
0.75). The indicators including NOy , O3/NOx , O3/NOy and
O3/NOz, which had relatively low success rates, exhibited
weaker correlation with the PR (R2 < 0.31; Fig. 6c–f). The
newly developed H2O2×HCHO/NO2 indicator exhibited
the strongest correlation with the PR (R2

= 0.75), imply-
ing that the log-linear combination of the H2O2, HCHO and
NO2 baseline concentrations could approximate the respon-
sive PR indicator to quantify O3 chemistry. Other indicators
can also be used to approximately estimate the PR based on
the regression coefficients shown in Fig. 6; however, their
correlations with the PR were not as strong as those with
H2O2×HCHO/NO2.

To evaluate the ability of the observable PR (oPR; esti-
mated based on H2O2×HCHO/NO2) to represent the spa-
tial and temporal variation in O3 chemistry, the spatial distri-
bution of the PR and oPR in the four study months was com-
pared across the simulated domain (Fig. 7). The oPR success-
fully captured the strong NOx-saturated regime in January
(PR< 1) and the NOx-limited (PR> 1) regime in July.

In addition, the PR and oPR suggested a consistently
strong NOx-saturated regime in northern and eastern China
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Figure 12. Comparison of the benefit in reducing PM2.5 from simultaneous NH3 reduction (1C_NH3) with that calculated from concentra-
tions (o1C_NH3).

and key regions such as the YRD and PRD. The domain-
averaged oPRs were 0.97, 1.52, 1.73, and 1.37 in January,
April, July, and October, respectively; these values are simi-
lar to the PRs (0.77, 1.24, 1.38 and 1.17, respectively). Thus,
the oPR may approximate the PR to quantify the O3 chem-
istry, even on a large spatial and temporal scale.

3.2.2 PM2.5

The correlations between PM2.5 observable indicators and
the responsive FR indicator derived from the RSM were in-

vestigated (Fig. 8). The AdjGR has the lowest R2 (0.40)
because of its high variations for the NH3-poor condition
(Fig. 5b). A stronger positive correlation was noted between
the GR and FR (R2

= 0.57); however, the success rate of
the GR was the lowest among all the indicators (the success
rate of the GR increased when the transition value was set as
the median value of the GR, namely 5, at an FR of 1). The
TAR exhibited the strongest positive correlation with the FR
(R2
= 0.60), implying that the FR can be approximately es-

timated by the log-linear combination of baseline concentra-
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tions of ammonia gas, nitric acid gas, particulate ammonium,
sulfate and nitrate.

The capability of the observable FR (oFR; estimated based
on the TAR indicator) in representing the spatial and tem-
poral variation in PM2.5 chemistry is illustrated in Fig. 9.
Both the FR and oFR suggested strong NH3-poor condi-
tions (FR> 1) in January and NH3-rich conditions (FR<
1) in April and July. The oFR suggested strong NH3-rich
conditions in northern and eastern China and the Sichuan
Basin; these findings were consistent with those for the FR.
The domain-averaged oFRs were 1.56, 1.05, 0.86, and 1.24
in January, April, July, and October, respectively, with the
strongest NH3-poor conditions in January and NH3-rich con-
ditions in July. These findings were comparable with the FRs
of 1.47, 1.16, 0.95 and 1.19 for the four study months, re-
spectively, suggesting that the oFR can approximate the FR
to quantify the PM2.5 chemistry and its spatial and temporal
variations.

3.3 Policy implications

3.3.1 O3

The responsive PR indicator may help policy-makers to un-
derstand the status and extent of O3 chemistry in the cur-
rent scenarios. A lower PR (< 1) suggested a NOx-saturated
regime. Moreover, the VNr could be used to inform policy-
makers about the level of simultaneous control of VOCs re-
quired to prevent an increase in O3 levels from NOx con-
trols. In general, the VNr is negatively correlated with the
PR because a lower PR implies a stronger NOx-saturated
regime, which in turn requires more simultaneous VOC con-
trol with NOx . By contrast, a higher PR implies a weaker
NOx-saturated or even NOx-limited regime, which requires
less or no simultaneous control of VOCs with NOx . The neg-
ative correlation between VNr and the PR was quantified by
the simple linear regression of VNr on PR (Fig. S7). A high
R2 (approximately 0.82) suggested that the VNr originally
derived from the RSM can also be approximately estimated
from the PR or oPR.

Figure 10 presents a comparison of the VNr derived from
the RSM, with the VNr calculated based on the oPR, esti-
mated by the H2O2×HCHO/NO2 indicator and denoted as
oVNr. Consistent spatial and temporal variations were found
for VNr and oVNr. Additional simultaneous VOC control is
required in January and in northern and eastern China and
is highly correlated with the low PR (Fig. 7). The domain-
averaged oVNr values were estimated to be 0.95, 0.43, 0.38,
and 0.47 in January, April, July, and October, respectively,
with the highest and lowest oVNr values noted in January
and July, respectively. This is comparable with VNr in the
four study months (i.e., 0.82, 0.46, 0.34, and 0.57, respec-
tively).

The annually averaged VNr and PR were also calculated
for each province in China (Fig. 11). VNr was negatively

Figure 13. Comparison of annually averaged benefit in reduc-
ing PM2.5 from simultaneous NH3 reduction (1C_NH3) and
population-weighted PM2.5 concentration in each province in
China.

correlated with the PR at the provincial level. The north-
ern provinces, namely Heilongjiang, Xinjiang, and Liaon-
ing, required the highest VNr (1–1.2) because their PRs
were very low (0.3–0.4). In the NCP, including the provinces
of Tianjin, Hebei, Henan, Shandong, Shanxi, Inner Mongo-
lia and Beijing, high VNr (0.7–0.9) was required to over-
come the stronger NOx-saturated regime (PR= 0.4–0.6).
The coastal provinces, namely Fujian and Guangdong, and
middle-eastern provinces, namely Jiangxi and Hunan, also
demonstrated relatively high PRs (> 0.7) and low VNr (<
0.3).

3.3.2 PM2.5

Using the responsive FR indicator or its observable oFR indi-
cator can rapidly identify NH3-rich or NH3-poor conditions,
and this information can aid policy-makers in estimating the
additional PM2.5 benefit associated with simultaneous con-
trol of NH3 and NOx emissions (1C_NH3). As discussed
in Sect. 2.2, 1C_NH3 can be calculated from the RSM us-
ing the first derivative of the PM2.5 responsive function to
NH3. Therefore, 1C_NH3 must be strongly associated with
the secondary inorganic aerosol (SNA) concentration, as sug-
gested in Fig. S8, which demonstrates a strong correlation
between SNA concentration and 1C_NH3. The linear re-
gression with high R2 (> 0.71) implies that the 1C_NH3
can be approximately calculated based on the SNA concen-
tration.

The 1C_NH3 estimated based on the SNA concentration
(o1C_NH3; based on the regression function in Fig. S8) was
compared with that derived from the RSM (Fig. 12). The
o1C_NH3 typically captured the spatial and temporal vari-
ation in 1C_NH3, suggesting large benefits in January and
October, particularly in eastern China and the Sichuan Basin.
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Figure 14. Control effectiveness with different NOx and VOC ratios in reducing population-weighted PM2.5 and O3 concentrations (µg m−3)
in China (NOx is from no control to 80 % reduction).

The domain-averaged 1C_NH3 values were approximately
0.31, 0.22, 0.16, and 0.38 µg m−3 PM2.5 per 10 % NH3 re-
duction in January, April, July, and October, respectively. In
April and July, o1C_NH3 presented consistent results of ap-
proximately 0.21 and 0.16 µg m−3 PM2.5, respectively, per
10 % NH3 reduction, but slightly underestimated the benefits
in January and October (0.24 and 0.22 µg m−3 PM2.5, respec-
tively, per 10 % NH3 reduction).

At the annual level, 1C_NH3 was compared with the
population-weighted PM2.5 concentration in each province
(Fig. 13). 1C_NH3 ranged from 0.2 to 1.2 µg m−3 PM2.5
per 10 % NH3 reduction. In addition, the provinces with
higher PM2.5 exposure exhibited additional benefits from
NH3 reductions (i.e., high 1C_NH3), particularly in Hunan,
Shandong, Tianjin, Jiangxi, Anhui, Henan and Hubei where
1C_NH3 was > 0.8 µg m−3 PM2.5 per 10 % NH3 reduction.
These benefits from simultaneous NH3 control were substan-
tial enough to be considered in these regions for achieving
the national ambient PM2.5 target (35 µg m−3).

3.3.3 Co-benefits of NOx and VOC control in reducing
O3 and PM2.5

NOx and VOCs are major precursors for O3 and PM2.5, and
effectively controlling their emissions can lead to co-benefits
in reducing O3 and PM2.5. The PR results suggest strong
NOx-saturated regimes in northern and eastern China includ-
ing key regions such as the Sichuan Basin, YRD and PRD,
where simultaneous VOC control with a certain VOC-to-
NOx ratio is required to prevent increases in O3 levels from
the NOx controls. PM2.5 sensitivity to NOx can be negative
under a strong NOx-saturated regime; this effect is not as
significant as it is for O3 (Fig. 3). We quantified the non-
linearity of PM2.5 sensitivity to NOx by using the same PR
concept but for PM2.5 response (Sect. S2); Fig. S9 presents
the spatial distribution of the PR to identify PM2.5 sensitivity
to NOx emission in the four study months. The PR values
for PM2.5 were > 1 in April, July and October in all grid
cells across China, suggesting that NOx control is always
beneficial for PM2.5 reduction during these months. Even in
January, the PR for PM2.5 (0.4–0.8 in eastern and northern
China) remains larger than that for O3 (0.2–0.6 in eastern and
northern China), implying that the suggested VNr for O3 was
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high enough to overcome the potential limitations on PM2.5
reduction from NOx control.

To explore the co-benefits of reducing O3 and PM2.5 af-
ter simultaneous control of NOx and VOCs, we investi-
gated the effectiveness of six control pathways with vari-
ous VOC-to-NOx ratios including 0, 0.2, 0.4, 0.6, 0.8 and
1.0 (Fig. 14). In general, O3 and PM2.5 concentrations can
be reduced in all months through simultaneous control of
NOx and VOC emissions, although different VNr and con-
trol levels are required in different months. In January (under
strongly NOx-saturated conditions), reductions in PM2.5 and
O3 require VOC emission controls in addition to NOx con-
trols to prevent potential disbenefits associated with the non-
linear chemistry. The smaller VNr required for PM2.5 (∼ 0.4)
than for O3 (∼ 1.0) in this case might be associated with the
smaller PR for PM2.5 as well as the additional benefit of VOC
controls in reducing secondary organic aerosols. Apparently,
a larger VNr control ratio and greater emission control is re-
quired in January compared with other months. In Fig. 14a,
only one pathway can achieve simultaneous reduction in O3
and PM2.5 concentrations (i.e., the pathway with VNr equal
to 1 and at the far end of the pathway, with reduction rates
> 80 %). In April and October, simultaneous VOC controls
were still required for O3 (VNr= 0.2–0.6) but not for PM2.5.
In July when the NOx-limited regime was dominant, the NOx
control was critical because the VOC controls had little effect
on either O3 or PM2.5. At the annual level, the simultaneous
VOC controls (40 % of the NOx controls) led to co-benefits
in reducing both O3 and PM2.5 at the national level. How-
ever, VNr varied significantly in different seasons, suggest-
ing that considering the seasonality of O3 and PM2.5 chem-
istry is necessary for design of a season-specific control strat-
egy.

4 Summary and conclusion

Compared with conducting multiple CTM simulations, the
indicator method proved more efficient in identifying the
chemical regime in the current scenarios. However, the tra-
ditional indicators are not as useful as the RSM-based PR
and FR indicators for policy-makers to infer feasible emis-
sion reduction paths. Therefore, this study quantified the rela-
tionship between RSM-based and traditionally observable in-
dicators and developed new observable response indicators,
the oPR and oFR, which can be used to quantify the non-
linearity of O3 and PM2.5 response to precursor emissions.
Similar to the traditional indicators, the oPR and oFR can
be easily calculated using a combination of ambient concen-
trations of certain chemical species obtained from surface-
monitored observations, modeling simulations or even satel-
lite retrievals. In addition, the observable responsive indica-
tors can not only rapidly identify the chemical regime but
also provide policy-makers with useful information, such as
simultaneous VOC controls to prevent increases in O3 lev-

els from NOx controls under the NOx-saturated regime (i.e.,
VNr), as well as the additional benefit of simultaneously re-
ducing NH3 alongside NOx control in PM2.5 reductions (i.e.,
1C_NH3). Since the indicators are developed from simu-
lations with spatially uniform emission controls across the
country, they are especially useful for providing quick esti-
mates of the potential benefits or risks from uniform controls.
These estimates can also provide a basis to design more lo-
calized control strategies for particular regions.

This study proposed a new O3 chemistry indicator,
namely H2O2×HCHO/NO2, and PM2.5 chemistry indica-
tor, namely the TAR, both of which exhibited the highest
success rates among all the indicators. This study also sug-
gested that the log-linear combinations of baseline H2O2,
HCHO and NO2 concentrations could provide an approxi-
mate PR to quantify O3 chemistry spatially and temporally.
Similarly, the log-linear combination of baseline concentra-
tions of ammonia gas, nitric acid gas, particulate ammo-
nium, sulfate and nitrate can be used to approximately esti-
mate the FR for PM2.5 chemistry. The VNr was highly corre-
lated with the PR, suggesting that a stronger NOx-saturated
regime requires greater VOC control accompanied by NOx
control. The positive correlation between 1C_NH3 and the
population-weighted PM2.5 concentration suggested that a
province with high PM2.5 exposure can gain greater ben-
efits from NH3 reduction. Finally, simultaneous control of
NOx and VOC could reduce both O3 and PM2.5 through-
out the year, and an effective control pathway (VNr= 0.4)
could lead to the co-benefits of reducing both O3 and PM2.5.
However, VNr varied significantly among the seasons and
provinces, suggesting the necessity of considering the sea-
sonality of chemistry and of designing a more localized con-
trol strategy for each province. We note that the discrepancy
between the observable indicator and the responsive indica-
tor might also be influenced by uncertainties in the chemi-
cal mechanism of CMAQ as well as prediction errors of the
pf-RSM. The new indicators were designed based on the ex-
isting chemical mechanism, and the transition values might
be refined in the future as our understanding of atmospheric
chemical processes improves.

In conclusion, the two unique aspects of this study are as
follows. First, quantification of the correlation of observable
indicators with responsive indicators (Figs. 5 and 7) implied
that the traditional observable indicators, based on monitored
or satellite-retrieved concentrations, can be used to quantify
the nonlinearity of PM2.5 and O3 to precursor emission and
provide useful policy implications. Second, this study re-
ported a promising method for efficiently establishing PM2.5-
and O3- responsive functions to precursors for traditional re-
sponsive or reduced-form modeling studies. This study sug-
gested that the PR or FR (a combination of coefficients in the
polynomial functions in the pf-RSM) can be approximately
estimated using the ambient concentration of certain chemi-
cal species. Similarly, all coefficients in polynomial functions
can be calculated based on a set of ambient concentrations
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of certain chemical species. The simple log-linear regression
method used in this study demonstrated the possibility that
even in the presence of uncertainties in prediction, more ad-
vanced data analytics technologies such as deep learning may
improve performance in future.
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